1) (15pts) Find all values of z in polar or Cartesian form, and plot them as points in the complex plane:
(a) $(1-i \sqrt{3})^{3 / 4}$
(b) $\quad \cos z=-2$
2) (15pts) Sketch the image of the region $\{z \in \mathbb{C}: 1 \leq|z| \leq e, \operatorname{Im} z \geq 0\}$ under the mapping $w=i \log (i z)$. You may consider this transform as a sequence of 3 separate, simple steps. Hint: use polar form for the original variable z, and note the slight complication from the fact that $\log (z)$ is the branch with $\arg z \in(-\pi / 2, \pi / 2]$
3) (25pts) Calculate each integral over the indicated circle, or explain why the integral equals zero:
a) $\oint_{|z|=3} \frac{d z}{\left(e^{z}+1\right)^{9}}$
b) $\oint_{|z|=5} \frac{e^{z} d z}{\left(e^{z}+1\right)^{9}}$
c) $\oint_{|z|=2} \frac{\sin \left(z^{2}\right) d z}{z^{2}-2 i z-1}$
d) $\oint_{|z|=R} \frac{d z}{\sqrt{z}}$
e) $\int_{|z|=R} \bar{z} d z$
4) (15pts) Find the bound on $\left|\int_{C} \frac{\cosh z}{z^{2}+2 i z-1} d z\right|$, where the integration contour C is a straight line connecting points $z=3 i$ and $z=3$. Hint: express $\cosh z$ in terms of exponentials.

Pick 2 problems between 5, 6, 7 =========================10=
5) (15pts) Consider any branch of function $f(z)=\left(\frac{z}{z-1}\right)^{1 / 2}$, describe its branch cut(s) and describe the jump discontinuity of this function across the branch cut(s). Finally, use this branch to compute $f(i)$
6) (15pts) Can the function $f(z)=e^{i \theta(z)}$ be analytic on domain D if $\theta(z)$ is a real non-constant function in D ? Use any method or theorem you like to answer this question.
7) (15 pts) Solve the boundary value problem for the Laplace's equation $\nabla^{2} \Phi=0$ in an infinite strip, with boundary conditions indicated below (Φ is a real function). Hint: consider analytic functions of form $f(z)=A e^{k z}$, where A and k are real constants. Make sure to satisfy all four boundary conditions!

